Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Radiation Oncology ; (6): 1322-1326, 2017.
Article in Chinese | WPRIM | ID: wpr-667453

ABSTRACT

Objective To compare five different detectors in output factor(OF)measurement for the CyberKnife(CK)system,and to select a suitable detector. Methods OFs for 12 different sizes of CK collimators were measured by EBT3films and 5 different commercially available detectors,consisting of diode detectors PTW 60017 and PTW 60018,ionizing chamber detectors PTW 31010 and PTW 30013,and diamond detector PTW 600019.OF was compared between different detectors and different measurement orientations. Results When the size of collimator was larger than 30 mm,the OF deviation among five detectors was less than 1%.When the size of collimator was smaller than 30 mm,however,the OF deviation among five detectors became large and obviously increased with the decrease in the size of collimator. With a OF deviation less than 2%,PTW 60019 achieved the best agreement with films. Compared with films,diode detectors gave slightly higher OFs,while ionizing chamber detectors gave much smaller OFs. The OF measurement was also affected by measurement orientation. PTW 60019 gave a smaller OF in the direction parallel to the central axis than in the direction perpendicular to the central axis of the radiation field,while PTW 31010 had an opposite result. Conclusions When the size of collimator is larger than 30 mm,PTW 31010,PTW 60017,PTW 60018,and PTW 60019 can be directly used for the OF measurement. When the size of collimator is smaller than 30 mm,correction is needed for the OF measurement using the above detectors. PTW 30013 is not suitable for the OF measurement in the small radiation field.

2.
Chinese Journal of Radiological Medicine and Protection ; (12): 671-676, 2017.
Article in Chinese | WPRIM | ID: wpr-662693

ABSTRACT

Objective To evaluate four detectors for the off-axis ratio profile measurements of a CyberKnife system, and provide reference and suggestions for selecting and using the correct detectors. Methods Profiles were acquired by using four detectors, PTW-60017, PTW-60018, PTW-60019 and IBA-SFD, at different depths for different collimator sizes, with the detector stem being oriented both perpendicular and parallel to the central beam axis. The differences of profiles and the influence of detector orientation on measurement result were analyzed. Results All full width at half maximum ( FWHM) of field measured by four detectors in parallel orientation was larger than that in actual field size. The deviation was increased with the size of collimator and measurement depth, with the maximum deviation of 1. 9 mm. The maximum deviation of FWHM among four detectors was 0. 2 mm. The penumbra was the smallest for IBA-SFD, and the largest for PTW-60019. The maximum deviation of penumbra was 0. 3 mm. The IBA-SFD tended to over-respond in the out-of-field region when the collimator size was larger than 30 mm. Both FWHM and penumbra in perpendicular orientation were smaller than those in parallel orientation for PTW-60017, PTW-60018 and PTW-60019, especially at 5 mm collimator. However, the trend was opposite for IBA-SFD. With the increase of collimator aperture, the difference between the right and left penumbra acquired by four detectors was increased, with more obvious stem effects. Conclusions Similar profiles were acquired by four detectors, but the detector characteristics and effects of detector orientations should be considered.

3.
Chinese Journal of Radiological Medicine and Protection ; (12): 671-676, 2017.
Article in Chinese | WPRIM | ID: wpr-660547

ABSTRACT

Objective To evaluate four detectors for the off-axis ratio profile measurements of a CyberKnife system, and provide reference and suggestions for selecting and using the correct detectors. Methods Profiles were acquired by using four detectors, PTW-60017, PTW-60018, PTW-60019 and IBA-SFD, at different depths for different collimator sizes, with the detector stem being oriented both perpendicular and parallel to the central beam axis. The differences of profiles and the influence of detector orientation on measurement result were analyzed. Results All full width at half maximum ( FWHM) of field measured by four detectors in parallel orientation was larger than that in actual field size. The deviation was increased with the size of collimator and measurement depth, with the maximum deviation of 1. 9 mm. The maximum deviation of FWHM among four detectors was 0. 2 mm. The penumbra was the smallest for IBA-SFD, and the largest for PTW-60019. The maximum deviation of penumbra was 0. 3 mm. The IBA-SFD tended to over-respond in the out-of-field region when the collimator size was larger than 30 mm. Both FWHM and penumbra in perpendicular orientation were smaller than those in parallel orientation for PTW-60017, PTW-60018 and PTW-60019, especially at 5 mm collimator. However, the trend was opposite for IBA-SFD. With the increase of collimator aperture, the difference between the right and left penumbra acquired by four detectors was increased, with more obvious stem effects. Conclusions Similar profiles were acquired by four detectors, but the detector characteristics and effects of detector orientations should be considered.

SELECTION OF CITATIONS
SEARCH DETAIL